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A Continued Fraction Expansion, with a Truncation Error 
Estimate, for Dawson's Integral 

By J. H. McCabe 

Abstract. A continued fraction expansion for Dawson's integral is considered and an 
estimate of the truncation errors of the convergents of this continued fraction is provided. The 
continued fraction is shown to provide a sequence of rational approximations to the integral 
which have good convergence for both small and large values of the argument. 

1. Introduction. Dawson's integral 

(1.1) F(x) = e-x2f et2dt 

is of importance in several physical problems. It occurs in such applications as heat 
conduction and spectroscopy, and in the theory of electrical oscillations in certain 
special vacuum tubes. The integral is closely related to the complex error function 
w(z), 

w(z) = e-z2 erfc(-iz) = e-z2 + 21 F(z) 
\F7T 

where erfc ', the complementary error function, is given by 

2 2 erfc T = e dt. 

The function F(x) was first tabulated by Dawson [2] and since then extensive 
tabulations have appeared. Lohmander and Rittsten [6] give values to ten decimal 
places for a large range of values of x. Hummer [4] expands F(x) as a series of 
Chebyshev polynomials, giving the coefficients to eighteen decimal places, while 
Cody et al. [1] provide a set of nearly best rational approximations to F(x) for all 
real x, with relative accuracies up to twenty-two significant figures. 

2. Series and Continued Fraction Expansions. Differentiating F(z), we find that 
for all complex values of z we obtain 

(2.1) F'(z) + 2zF(z) = I 

and further, for k _ 1, the derivatives of F(z) can be shown to satisfy 

(2.2) F(k+l)(z) + 2zF(k)(z) + 2kF(k-1)(z) = 0. 
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Thus if we know the value of F(z) at any point we can evaluate the Taylor series of 
F(z) about that point. In particular, since F(O) = 0, we readily obtain the 
Maclaurin series 

(2.3) F rz)= (_)kk! 22kz2k+l 

k=O (2k + 1)! 

The series (2.3) converges for all finite z. However, as Cody et al. [1] point out, 
practical convergence is delayed until k becomes greater than 2- 

Corresponding to the series (2.3) is the continued fraction expansion 

(2.4) F( z 2z2 4Z2 6Z2 8Z2 
F 

Iz=T 3 - + 7 - 9 +*. 

Naturally this continued fraction also converges throughout the finite complex 
plane and as Thacher [12] points out, it is uniformly more efficient than the series 
(2.3) and is numerically stable in the first octant of the complex plane. For large 
values of jzI the convergence of (2.4), though faster than that of (2.3), is still slow. 

When Iarg zI < 7/4 approximations to F(z) for large values of Iz can be 
obtained from the asymptotic series 

(2.5 ) Ffz) -I + 1 + 1 + 1 +.... (2.5) F~~~~z) ~ 2z 22z 3 2 3z5 24Z7 

This series is divergent for all real values of z but, provided it is truncated after a 
suitable number of terms, can supply good approximations to Dawson's integral: 
for x = 10 an accuracy of twenty-five decimal places is obtained from twenty-four 
terms. 

Corresponding to the series (2.5) is the continued fraction 

(2.6) F(z) 1 2 4 6 
2z - 2z - 2z - 2z -.'., 

which, like the series (2.5), is divergent for all real z but once again can be used to 
provide approximations to Dawson's integral for large values of the argument. In 
such instances it is to be preferred to the continued fraction (2.4), even though the 
latter is convergent. 

The two continued fractions given above each correspond to one series only. A 
third continued fraction expansion of F(z) is 

(2.7) Fz) 
42 82 12Z 

(2.7) F~z) = I + 2 Z2 3 + 2 Z2- 5 + 2 Z2- 7 + 2 Z2-* 

and this expansion corresponds to the series (2.3) and to the series (2.5) simulta- 
neously. The continued fraction belongs to a class of corresponding fractions, called 
M fractions, which are constructed to correspond to a power series expansion about 
the origin and to another about the point at infinity simultaneously. This class of 
corresponding fractions was first introduced by Murphy [11]. A study of their 
construction and properties has been carried out by McCabe [8] and [9] and by 
McCabe and Murphy [10]. 

The particular continued fraction (2.7) converges throughout the finite complex 
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plane but unlike the expansion (2.4) the character of its convergence is.different in 
one part of the plane than in the remainder. When z lies outside the region 
larg zj < g/4 convergence of (2.7) is faster than that of (2.3), slower than that of 
(2.4), and like both of these expansions it becomes worse as Izi increases. Inside the 
region given by jarg zI < g/4 the convergence of (2.7) is good for both small and 
large values of zJ. For the particular continued fraction (2.7) this type of behavior 
was noticed by Wynn [13] who obtained the same expansion as a special case of a 
continued fraction expansion of the ratio of two confluent hypergeometric func- 
tions. In the same work he also tabulates the numerical efficiency of the three 
expansions (2.4), (2.5) and (2.7). In [14] the same author obtains converging factors 
for the expansion (2.7). 

3. Truncation Error Estimates. A truncation error estimate for the expansion (2.7) 
and for (2.4) and (2.6) can be obtained by making use of a fundamental result of 
Laguerre [5] regarding continued fraction expansions of functions which satisfy first 
order ordinary differential equations. The result was originally obtained for 
continued fraction expansions about one point but the extension to expansions 
about two points is straightforward and is provided by McCabe [8]. Briefly, 
Laguerre's result is as follows. 

The convergents of the continued fractions are rational functions of z. The 
denominator polynomials of these rational functions can be expressed as hypergeo- 
metric functions (those of the convergents of (2.4), (2.6) and (2.7) are Laguerre 
polynomials), and each can thus be regarded as the polynomial solution of a second 
order ordinary differential equation. Following the work of Laguerre, it can then be 
shown that a second solution of this equation is in each case a constant multiple of 
the quantity {B. (z) F(z) - A, (z)} G(z) where A, (z)/B, (z) denotes the nth convergent 
of the continued fraction expansion of F(z) and G(z) is the integrating factor of the 
first order ordinary differential equation satisfied by F(z). This second solution can 
also be expressed as a hypergeometric function and hence the truncation error 
F(z) - A(z)/B(z) can be expressed as a ratio of two hypergeometric functions. 

Using Laguerre's result the truncation errors of the expansion (2.7) can, after 
some manipulation, be expressed exactly as 

A, (z) __ gn! e-2Z2 z2n+ IIF, ( n+ ; Z2) 
(3.1) F(z) - B-z Pn+~1( 2 2 

nz2)- 
B, (z) 217(n + 2)]F(n + ')IF, (I,! 2-n,_ 2 

Corresponding results for the two expansions (2.4) and (2.6) are given by Luke [7] 
and by Fair [3], both of whom study the problem of obtaining truncation error 
estimates of Pade approximations. The convergents of (2.4) and (2.6) are Pade 
quotients of the respective power series. 

Expressing the truncation errors exactly as ratios of hypergeometric functions 
does not lead directly to useful error estimates. The next step is to make use of 
known asymptotic estimates of the hypergeometric functions as one or more of the 
parameters becomes large. For the particular case of (3.1) this is a straightforward 
procedure (details are given by McCabe [8]), and we obtain the estimate 

A . (z) n!22ne-2z z2n+1 
(3.2) F~~z) - B(Z) -(2n ? l) (2n - 1)2 (2n - 3)2 .. . 5232' 
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For real values of z we can use (3.2) to provide estimates of the errors incurred when 
(2.7) is used to supply rational approximations to Dawson's integral. For any value 
of n the above estimate imitates the true error in that it is zero at the origin, tends 
to zero as x tends to infinity, and reaches a maximum at a finite value of x. In the 
case of the estimate the maximum occurs when x = ' 2n+ and experience 
shows that the position of maximum error of the true errors can be expected to 
move away from the origin as n increases. The table below shows the position of 
maximum error of the first ten convergents of (2.7), calculated numerically, and also 
the position of the maximum estimated error. 

n ~ 2 + 1 maximum 
error 

1 0.8660 1.0467 

2 1.1180 1.2085 

3 1.3228 1.3665 

4 1.5000 1.5160 

5 1.6583 1.6571 

6 1.8028 1.7903 

7 1.9364 1.9168 

8 2.0615 2.0370 

9 2.1794 2.1520 

10 2.2913 2.2631 

The error estimate (3.2) was obtained on the assumption that n was large. 
However, as can be seen from the following table, it will provide reasonably good 
error estimates even when n is small. On the other hand when IZ2I becomes 
approximately equal to n the exponential term causes the estimate to tend to zero, 
as z increases, much faster than the real error. This could be overcome if we could 
obtain asymptotic estimates of their hypergeometric functions as both n and z 
become large. In the following table the upper and lower figures are the actual error 
and estimated error respectively. 

x F(x) n=2 n 4 n=6 n 8 ns= 10 

0.00 0.00000000 - 

0.25 0.23983916 }0.60(- 3) 0.21(- 6) _ 0.25 0-42383163 0.61(- 3) 0.21(- 6) 0.28(- 10) 0.19(- 14) 0.85(- 20) 

0.50 .4244638 ?.13(- 1) 0.72(- 4) 0.15(- 9) 0.17(- 9) - 0.50 .4244638 
O.13(-l1) 0.72(- 4) 0.15(- 6) 0.17(- 9) 0.12(- 12) 
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x F(x) n=2 n=4 n=6 n=8 ns= 10 

0.75 0.52301277 J0.48(- 1) 0.14(- 2) 0.16(- 4) 0.91(- 7) 0.33(- 9) 
t0.59(- 1) 0.15(- 2) 0.16(- 4) 0.92(- 7) 0.33(- 9) 

1.00 0.53807951 S084(- 1) 0.76(- 2) 0.27(- 3) 0.50(- 5) 0.57(- 7) 
0.96(- 1) 0.84(- 2) 0.28(- 3) 0.51(- 5) 0.57(- 7) 

1.50 0.42824907 0 79(- 1) 0.22(- 1) 0.40(- 2) 0.39(- 3) 0.23(- 4) 
*0.60(- 1) 0.26(- 1) 0.45(- 2) 0.41(- 3) 0.23(- 4) 

2.00 0.30134039 i0.36(- 1) 0.13(- 1) 0.48(- 2) 0.14(- 2) 0.27(- 3) 
0.76(- 2) 0.11 (- 1) 0.57(- 2) 0.16(- 2) 0.29(- 3) 

2.50 0.22308372 ?0.13(- 1) 0.35(- 2) 0.15(- 2) 0.72(- 3) 0.29(- 3) 
.26(- 3) 0.88(-3) 0.12(- 2) 0.82(- 3) 0.35(- 3) 

3.00 0.17827103 0 .47(- 2) 0.75(- 3) 0.26(- 3) 0.12(- 3) 0.68(- 4) 
* * l~~0.26(- 5) 0.18(- 4) 0.50(- 4) 0.74(- 4) 0.67(- 4) 
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